Потенциальные возможности утилизации сбросной теплоты. Системы утилизации тепла в холодильных установках Общие принципы работы аппаратов по утилизации тепла

Из всех видов потребляемой в химической промышленности энергии первое место принадлежит тепловой энергии. Степень использования тепла при проведении химико-технологического процесса определяется тепловым К.П.Д.:

где Q т и Q пр соответственно количество тепла, теоретически и практически затрачивае­мого на осуществление реакции.

Использование вторичных энергетических ресурсов (отходов) повышает К.П.Д. Энергетические отходы используются в химических и других отраслях промышленности для различных нужд.

Особенно большое значение в химической промышленности имеет утилизация тепла продуктов реакций, выходящих из реакторов, для предварительного нагрева материалов, поступающих в эти же реакторы. Такой нагрев осуществляется в аппаратах, называемых регенераторами, рекуператорами и котлами-утилизаторами. Они накапливают тепло отхо­дящих газов или продуктов и отдают его для проведения процессов.

Регенераторы представляют собой периодически действующие камеры, заполненные насадкой. Для непрерывного процесса необходимо иметь, по крайней мере, 2 регенера­тора.

Горячий газ сначала проходит через регенератор А, нагревает его насадку, а сам охлажда­ется. Холодный газ проходит через регенератор Б и нагревается от ранее нагретой на­садки. После нагрева насадки в А и охлаждения в Б заслонки перекрывают и т.д.

В рекуператорах реагенты поступают в теплообменник, где нагреваются за счёт те­пла горячих продуктов, выходящих из реакционного аппарата, и затем подаются в реак­тор. Теплообмен происходит через стенки трубок теплообменника.

В котлах-утилизаторах тепло отходящих газов и продуктов реакции используют для получения пара.

Горячие газы движутся по трубам, размещённым в корпусе котла. В межтрубном про­странстве находится вода. Образующийся пар, проходя влагоотделитель, выходит из котла.

Сырьё

Химическая промышленность характеризуется высокой материалоёмкостью произ­водства. На одну тонну готовой химической продукции расходуется, как правило, не­сколько тонн сырья и материалов. Отсюда следует, что себестоимость химической про­дукции в значительной мере определяется качеством сырья, способами и стоимостью его получения и подготовки. В химической промышленности затраты на сырьё в себестоимо­сти продукции составляют 60-70% и более.

От вида и качества сырья существенно зависит полнота использования производст­венных мощностей отраслей химической промышленности, производительность тепла, продолжительность работы оборудования, затраты труда и т.д. Свойства сырья, содержа­ние в нём полезных и вредных компонентов определяют применяемую технологию его обработки.

Виды сырья весьма разнообразны, и их можно разделить на следующие группы:

  1. минеральное сырьё;
  2. растительное и животное сырьё;
  3. воздух, вода.

1. Минеральное сырьё – полезные ископаемые, добываемые из земных недр.

Полезные ископаемые в свою очередь подразделяются на:

  • рудные (получение металлов) важные полиметаллические руды
  • нерудные (удобрения, соли, H + , OH - стекло и т.д.)
  • горючие (угли, нефть, газ, сланцы)

Рудное сырьё – это горные породы, из которых экологически выгодно получать ме­таллы. Металлы в нём находятся большей частью в виде оксидов и сульфидов. Руды цвет­ных металлов довольно часто содержат в своём составе соединения нескольких металлов – это сульфиды Pb, Cu, Zn, Ag, Ni и др. Такие руды называют полиметаллическими или комплексными. Непременной составной частью всех промышленных руд является FeS 2 – пирит. При переработке некоторых руд получают наряду с металлами и другие продукты. Так, например, одновременно с Cu, Zn, Ni при переработке сульфидных руд получают и H 2 SO 4 .

Нерудное сырьё – это горные породы, используемые в производстве неметаллических ма­териалов (кроме хлоридов щелочных металлов и Mg). Этот вид сырья или непосредст­венно используется в народном хозяйстве (без химической переработки) или служит для того или иного химического производства. Это сырьё используют в производстве удобре­ний, солей, кислот, щелочей, цемента, стекла, керамики и т.д.

Нерудное сырьё условно делят на следующие группы:

  • строительные материалы – сырьё используется непосредственно или после механиче­ской или физико-химической отработки (гравий, песок, глина и т.д.)
  • индустриальное сырьё – используется в производстве без обработки (графит, слюда, корунд)
  • химическое минеральное сырьё – используют непосредственно после химической об­работки (сера, селитра, фосфорит, апатит, сильвинит, каменная и другие соли)
  • драгоценное, полудрагоценное и поделочное сырьё (алмаз, изумруд, рубин, мала­хит, яшма, мрамор и т.д.)

Горючее минеральное сырьё – ископаемые, которые могут служить в качестве топ­лива (угли, нефть, газ, горючие сланцы и др.)

2. Растительное и животное сырьё – это продукты сельского (земледелия, животноводства, овощеводства), а также мясного и рыбного хозяйства.

По своему назначению оно подразделяется на пищевое и техническое. К пищевому сырью относятся картофель, сахарная свекла, хлебные злаки и т.д. Химическая и другие отрасли промышленности потребляют растительное и животное сырьё, непригодное для пищи (хлопок, солома, лён, китовый жир, когти и т.д.). Деление сырья на пищевое и техниче­ское в некоторых случаях условно (картофель → спирт).

3. Воздух и вода являются самым дешёвым и доступным сырьём. Воздух – практически неисчерпаемый источник N 2 и O 2. H 2 O не только непосредственный источник H 2 и O 2 , но и участвует практически во всех химических процессах, а также используется как раство­ритель.

Экономический потенциал любой страны в современных условиях в большей сте­пени определяется природными ресурсами полезных ископаемых, масштабами и качест­венной характеристикой их местоположений, а также уровнем развития сырьевых отрас­лей промышленности.

Сырьевые ресурсы современной промышленности очень разнообразны, причем с развитием новой техники, внедрением более эффективных методов производства сырье­вая база постоянно расширяется за счёт открытия новых месторождений, освоения новых видов сырья и более полного использования всех его компонентов.

Отечественная промышленность имеет мощную сырьевую базу и располагает запа­сами всех необходимых ей видов минерального и органического сырья. В настоящее время США занимает первое место в мире по добыче запасов P, каменных солей, NaCl, Na 2 SO 4 , асбеста, торфа, древесины и т.д. У нас одна из первых мест по разведанным зале­жам нефти и газа. И разведанные запасы сырья из года в год увеличиваются.

На современном этапе развития промышленности большое значение приобретает ра­циональное использование сырья, которое предполагает следующие мероприятия. Рацио­нальное использование сырья позволяет повысить экологическую эффективность произ­водства, т.к. стоимость сырья составляет основную долю в себестоимости химической продукции. В связи с этим стремятся использовать более дешёвое, особенно местное сы­рьё. Например, в настоящее время в качестве углеводородного сырья всё шире исполь­зуют нефть и газ, а не каменный уголь, этиловый спирт, полученный из пищевого сырья заменяют на гидролизный из древесины.

Описание:

Системы приточно-вытяжной вентиляции для административных и жилых помещений эффективны не только с санитарно-гигиенической точки зрения. При наличии автоматической утилизации тепла, они также вносят существенный вклад в снижение затрат на отопление. Воздух, удаляемый из помещения, имеет температуру 20-24 0 С. Не использовать это тепло - значит, в буквальном смысле, выпускать его в форточку. Тепло удаляемого воздуха можно использовать для подогрева воды и приточного воздуха и, тем самым, внести свой вклад в защиту окружающей среды.

Утилизация тепла

Д. Дросте , ИнноТек Системанализ ГмбХ, Берлин (Германия)

Технология

Основные положения

Системы приточно-вытяжной вентиляции для административных и жилых помещений эффективны не только с санитарно-гигиенической точки зрения. При наличии автоматической утилизации тепла, они также вносят существенный вклад в снижение затрат на отопление. Воздух, удаляемый из помещения, имеет температуру 20-24 o С. Не использовать это тепло - значит, в буквальном смысле, выпускать его в форточку. Тепло удаляемого воздуха можно использовать для подогрева воды и приточного воздуха и, тем самым, внести свой вклад в защиту окружающей среды.

Таким образом, утилизация тепла необходима для снижения потерь при вентиляции.

Технические решения

В вентиляционных системах зданий заданное количество удаляемого воздуха забирается из помещений с высоким содержанием влаги и загрязнений: кухни, туалета, ванной комнаты, - затем охлаждается в перекрестноточном пластинчатом теплообменнике и выбрасывается наружу. Такое же количество предварительно очищенного от пыли наружного приточного воздуха нагревается в теплообменнике без контакта с удаляемым воздухом и подается в жилые помещения, спальные и детские комнаты. Соответствующие устройства располагаются на чердаках, в подвалах или во вспомогательных помещениях.

В системах автоматической приточной вентиляции заданное количество воздуха с помощью вентиляторов подается в помещение непрерывно. Вытяжные вентиляторы отбирают загрязненный воздух из кухонь, туалетов и т.д.

При правильном подборе вентиляторов обеспечивается воздухообмен, соответствующий требованиям Федерального правительства. Для обеспечения утилизации тепла в систему включены специальные теплообменники, например, перекрестноточные, при необходимости снабженные тепловым насосом.

Современные установки в домах с хорошей теплоизоляцией, по сравнению с конвективной системой отопления, позволяют экономить до 50% тепла.

Эффективность передачи тепла от удаляемого воздуха к приточному составляет в пластинчатых теплообменниках около 60%, при влажном удаляемом воздухе даже больше. Это означает, что в квартире жилой площадью 100 м 2:

Мощность системы отопления ниже на 10 Вт/м 2 жилой площади;

Годовое потребление тепла снижается примерно с 40 до 15 кВт/м 2 ·год.

Экономическая эффективность

Управляемая система вентиляции и утилизации тепла требует энергетических затрат на подогрев воздуха меньше, чем другие системы. При этом, благодаря снижению установочной мощности системы отопления, при новом строительстве снижаются инвестиционные затраты. Дополнительно, за счет использования систем утилизации тепла, снижаются затраты на топливо, так как используются бытовые тепловыделения (имеются в виду тепловые выделения человека, электрических приборов, освещения, а также инсоляция и т.д.). Бытовые тепловыделения вместо того, чтобы "перегревать" помещение, в котором они возникают, перераспределяются по системе воздуховодов в те помещения, где есть "недогрев". Также следует иметь в виду, что во многих квартирах длительное проветривание через открытые окна часто нежелательно из-за высокого уровня шума. Использование в системе механической вентиляции установок утилизации тепла и тепловых насосов делает ее более энергоэкономичной.

Внедрение

Экономические предпосылки внедрения современных отопительных систем достаточно многообразны. В ряде федеральных земель существуют специальные налоговые льготы, благодаря которым первоначальные затраты можно снизить на 20-30%. Кроме того, ряд программ энергосбережения содержит разделы, посвященные вентиляции жилых помещений. Так, например, в программе земли Рейн-Пфальц предусмотрена доплата до 25%, но не более 7500 DМ. Особенно рекомендуется внедрение тепловых насосов, при этом в некоторых землях предусматривается доплата до 30%.

Примеры использования

Утилизация тепла в многоквартирном доме

В типичном многоквартирном доме в Лейпциге 1912 года постройки, который был реконструирован и дополнительно теплоизолирован, голландская вентиляционная фирма Van Ophoven использовала управляемую систему вентиляции с утилизацией тепла. Дома такого типа составляют до 60% жилого фонда Лейпцига. Система приточно-вытяжной вентиляции с утилизацией тепла в перекрестноточном теплообменнике автономна до момента включения дополнительного подогревателя приточного воздуха. Для обеспечения утилизации тепла в систему включены специальные теплообменники, в нашем примере - перекрестноточные. Речь идет в данном случае о равновесной системе вентиляции. Каждая квартира оборудована прибором, установленном на стене в специально отведенном месте. Наружный воздух предварительно нагревается в утилизационном устройстве, а затем с помощью дополнительного подогревателя нагревается до необходимой температуры. В данном случае речь идет о непрямом отоплении. Анализ эффективности этой системы показал, что экономия энергии составляет 40%, а выбросы СО 2 снизились на 69%.

Воздухообменные установки

Во многих административных зданиях в Носсене, в офисах, больницах, банках благоприятный микроклимат обеспечивают энергоэкономичные воздухообменные установки с утилизацией тепла. Эффективность утилизации тепла в противоточных теплообменниках может достигать 60%. На приведенном здесь снимке видно, что воздухообменные установки хорошо вписываются в обстановку помещения.

Литература

1. Arbeitskreis der Dozenten fur Klimatechnik: Handbuch der Klimatechnik, Verlag C.F. Muller GmbH, Karlsruhe

2. Recknagel/Sprenger: Taschenbuchfur Heizung + Klimatechnik, R. Oldenburg Verlag, Munchen/Wien 83/84

3. Ministerium fur Banuen und Wohnen des Landes Nordrhein-Westfalen: Luftung im Wohngebaude

4. THERMIE-Maxibroschure: Leitfaden energiesparende und emissionsarme Anlagen zur Heizung, Kuhlung und Klimatisierung von kleinen und mittleren Unternehmen in den neuen Bundeslandern, erhaltlich under OPET.

При объективной оценке эффективности нужно учитывать разные режимы работы утилизатора: «сухой», «мокрый», неуправляемый, управляемый, оттайки и др., описанные в предыдущей статье (журнал С.О.К., №12/2010). В результате возможных ошибок, перечисленных ниже, можно получить фактическую эффективность и экономию теплоты существенно меньшую, чем по расчету, это может не устроить заказчика. Последний не намерен долго ждать окупаемости этого аппарата, отводя этому срок примерно два-три года.

Основные теплотехнические параметры утилизаторов теплоты и холода

В технических и частично экономических расчетах, при испытании теплоутилизационного оборудования используют различные и, в общем случае, многочисленные параметры, одни из которых применяют чаще, другие — реже. Среди этих параметров основными являются:

В вышеприведенных формулах использованы выражения, называемые водяными эквивалентами по наружному W н и уходящему W у воздуху, по циркулирующей воде или рассолу W w , по насадке W нас: W н = G н c в; W у = G у c в; W w = G w c w и W нас = М нас c нас. Все эти величины, кроме W нас, измеряют в кВт/°C, а величину W нас — в кДж/°С.

Отношение W нас к любому из эквивалентов (W н, W y , W w) характеризует инерционность процесса передачи теплоты от насадки к движущейся среде и измеряется в секундах.

Технико-экономическая эффективность применения теплоутилизации в СКВ и СВ

Задача обоснования эффективности теплоутилизации связана с учетом значительной стоимости оборудования, достигающей 30-50 % от стоимости приточной установки, разной продолжительности использования, тенденцией роста тарифов на тепловую и электрическую энергию, высокой платой за подсоединение к теплосети, высоких штрафов за превышение температурой обратной воды ее графика ТЭЦ, поэтому однозначного решения такая задача не имеет. По мнению А.А. Рымкевича и других специалистов, утилизация теплоты — важное вторичное мероприятие, которое нужно рассматривать и анализировать после того, как исчерпаны все первичные возможности снижения потребления теплоты за счет комплекса мероприятий.

Способы оценки эффективности утилизации теплоты

Существуют несколько способов оценки эффективности утилизации теплоты в том или ином аппарате. Первый способ оценки на основе коэффициента использования энергии как отношения получаемой в утилизаторе теплоты к затрачиваемой электроэнергии на преодоление сопротивления сред η э = Q т /N.

Будучи чисто энергетической характеристикой, он не учитывает стоимости аппарата и разные, к тому же возрастающие, тарифы за теплоту (по горячей воде или сопутствующей электроэнергии) и за электроэнергию, т.е. использует натуральные мгновенные показатели. Кроме того, получаемая в утилизаторе теплота всегда переменна в зависимости от начальной разности температур t у - t нi текущей эффективности и режима работы теплоутилизатора.

Второй способ оценки основан на эксергетическом КПД , учитывающем относительную эксергию теплоты, влаги и эксергию движущегося воздуха:

где E 1 и Е 2 — эксергия теплоты, влаги и эксергия удаляемого и приточного (наружного) воздуха; ΣE n — суммарная эксергия потребляемой электрической энергии в системе. По поводу этих коэффициентов В.Н. Богословский и М.Я. Поз справедливо заметили, что «...любой из указанных термодинамических показателей дает только представление о степени термодинамического совершенства процесса и не может служить основанием для принятия технического решения.» .

Третий способ оценки является более общим технико-экономическим показателем и характеризует ожидаемый срок окупаемости дополнительных капитальных затрат (впервые предложен для условий рынка английским физиком У Томсоном (1824-1907), более известным в нашей стране как теплофизик Кельвин ) в вариантах разного типа ТУ, их эффективности, стоимости и аэродинамического сопротивления:

Годовой экономический эффект [руб/ год] как разность приведенных затрат по сравниваемым вариантам систем с теплоутилизатором (2) и без него (1) является другим комплексным показателем:

где ΔC т.год — стоимость сэкономленной теплоты в горячей воде, паре, электроэнергии с учетом настоящих и перспективных тарифов на энергоносители, руб/год; ΔC э.год — стоимость дополнительного годового расхода электроэнергии на перемещение воздуха и воды через аппарат, руб/год; ΔK ту — капитальные затраты на утилизатор, его монтаж, наладку и управление, руб.; (Е н + 0,18) ΔK ту — отчисления от дополнительных капитальных затрат на амортизацию, ремонт, общеобъектные и прочие расходы 0,18ΔK ту [руб/год], в связи с применением теплоутилизатора и изменением типоразмера воздухонагревателя, а также с учетом нормативного коэффициента эффективности:

где r — норма дисконта, r = 0,10-0,15 ; Т ок — срок окупаемости дополнительных капитальных затрат, год; ΔK вн — сокращение капитальных затрат на воздухонагреватель при уменьшении его рядности или полном отказе, руб.; ΔK прис — единовременные затраты на присоединение объекта к источнику теплоты, руб/Гкал или руб/кВт⋅ч.

В формуле должна быть учтена зависимость всех величин от конструкции утилизатора и его эффективности. Также среди составляющих эксплуатационных затрат следует учесть возможные штрафы ТЭЦ за превышение температуры обратной воды после воздухонагревателя.

Сводная номограмма для оценки эффективности современных теплоутилизаторов была разработана на основе соответствующих расчетов и представлена на рис. 1 в предположении неизменности коэффициента эффективности в течение неуправляемого режима работы аппарата. Эта номограмма построена в следующей последовательности. Предварительно по данным одного из производителей кондиционеров была оценена примерная удельная стоимость разных теплоутилизаторов (рис. 1а). Аналогично на этот график можно нанести данные об удельной стоимости теплоутилизаторов других производителей. Для конкретных условий (t y = 20 °C, t к = 10 °С) при разных θ ту построена граница режимов работы ТУ (правый квадрант на рис. 1) и определено удельное количество теплоты (на 1 кг/с нагреваемого воздуха при односменной работе).

Воспользуемся этими данными для оценки эффективности применения ТУ в климатических условиях города Санкт-Петербурга.

Оценить удельную экономическую эффективность применения теплоутилизатора, отнесенную к 1000 м 3 /ч нагреваемого наружного воздуха при его удельной стоимости K ту /L н = 40 тыс. руб/(тыс. м 3 /ч) в самом благоприятном случае, т.е при непрерывной работе системы

ΣQ ту.год = 24 тыс. кВт⋅ч/(год⋅тыс. м 3 /ч), электронагреве по среднему (между дневным и ночным) тарифу c’э = 2 руб/кВт⋅ч, аэродинамическом сопротивлении аппарата ΔР в = 0,30 кПа; КПД вентиляторной установки η = 0,7, соответствующей дополнительной мощности на перемещение воздуха 0,12 кВт/(тыс. м 3 /ч):

дополнительном годовом расходе электроэнергии 1,05 тыс. кВт⋅ч/(год⋅тыс. м 3 /ч) ΔW э = 8766 х 0,12 = 1,05.

Сокращением затрат на воздухонагреватель при устройстве теплоутилизатора пренебречь. Платой за подключение данного нагревателя к теплосети и штрафом за превышение воздухонагревателем температуры обратной воды пренебречь. Срок окупаемости затрат Т ок принять равным трем годам. Определяем срок окупаемости дополнительных капитальных затрат, получаем один год:

Поменяем условия расчета, заменив электронагрев теплоносителем — горячей водой по тарифу с’ т = 1 руб/кВт⋅ч. Тогда срок окупаемости дополнительных капитальных затрат на устройство теплоутилизатора в тех же условиях будет равен 2,7 года:

Как видно, даже при данном тарифе на теплоту в горячей воде и при непрерывной работе системы в течение суток и года высокая удельная стоимость теплоутилизатора не позволяет рассчитывать на быстрый возврат (окупаемость) капиталовложений. Если применять менее эффективные (θ тy = 0,55-0,65), но зато более дешевые устройства, то, судя по повторяемости Δτ/Δt н, основной эффект может возрасти, т.к. его достигают не при низких, а при промежуточных наружных температурах (t н = -10...+10 °С).

Для более строгого расчета нужно принимать во внимание разную поверхность, рядность и стоимость основного воздухонагревателя и еще одного электрического, работающего в случае прекращения подачи теплоносителя во внеотопительный период при t н > 8 °С. Результаты экономического расчета повысят эффективность утилизации теплоты, если учесть высокую начальную плату за присоединение воздухонагревателя к тепловой сети или другому источнику.

Оценка эффективности применения утилизаторов

Проблеме оценки эффективности применения утилизаторов посвящено много публикаций. Все они по-разному подходят к методам вычисления эффекта, учитывая одни составляющие и не учитывая другие. Дадим оценку только некоторым, наиболее характерным публикациям. В статье использован традиционный, упрощенный, по нашему мнению, не совсем правильный и частный метод расчета срока окупаемости как результат деления стоимости теплоутилизатора на стоимость разности сэкономленной тепловой и перерасходованной электрической энергии. При этом в статье не указана эффективность аппарата и комплекс «эффективность/стоимость», кстати, переменный, зависящий от типа аппарата, его воздухопроизводительности, не учтены разные режимы работы, оттайка и возникающие перерасходы, плата за присоединение и др. Все это не дает представления о различии результатов расчета в разных условиях.

Что касается многообразных климатических условий, представленных в статье городами, где суткоградусы отопительного периода изменяются от 1500 до 12 000 сут-°С за отопительный период, то эту часть работы можно существенно упростить. Проведя небольшое исследование и представив его в координатах: относительный годовой расход утилизируемой теплоты в круглогодично неуправляемом аппарате — суткоградусы отопительного периода — можно получить практически линейную зависимость (рис. 2). Такая линеаризация делает избыточными многократные расчеты, приводимые в этой статье, а прямую для данных условий (L н, θ ту, ΔK ту) достаточно провести по трем-четырем точкам, соответствующим городам в разных климатических условиях.

Технико-экономическая оценка энергосберегающего оборудования

Технико-экономической оценке энергосберегающего оборудования посвящена статья , характерная в части возникающих вопросов и замечаний. Наибольшее внимание в ней уделено собственно методике анализа и вычислению коэффициента дисконтирования, имея ввиду отдаленный срок окупаемости. Однако расчеты показывают, что полная амортизация и окупаемость затрат на эти аппараты желательна за относительно короткий срок (один-три года). В ряде случаев, при дефиците теплоты на объекте и высокой плате за присоединение к источнику, утилизация не только обоснована, но и единственно возможна для нагревания наружного воздуха.

Не имея принятую в статье итоговую формулу для срока окупаемости теплоутилизатора, трудно представить, учтены ли в приводимых расчетах: возможный дефицит теплоты на объекте и реальная, постоянно растущая плата за подсоединение к источнику теплоты; принятая доля разности капитальных затрат, учитываемая в эксплуатационных затратах на амортизацию, ремонт, общеобъектные расходы (всего около 18 %).

Покажем на примере, что единовременная плата за подсоединение к тепловой сети соизмерима или даже превышает стоимость теплоутилизатора. Пусть удельная стоимость утилизатора ΔК ту ~ 30-40 тыс. руб/(тыс. м 3 /ч). Такому единичному расходу воздуха соответствует в средних условиях расчетная теплопроизводительность утилизатора и, соответственно, уменьшение мощности при подсоединении к ТЭЦ:

Это равносильно плате за подсоединение в размере

ΔК подс = 3,45 х 12 х 10 3 = 41,5 тыс. руб., если принять удельную плату:

В условиях этого примера оказывается, что плата за присоединение к ТЭЦ соизмерима или даже больше, чем стоимость теплоутилизатора, и поэтому речи о сроке окупаемости не идет.

Нельзя не обратить внимание в анализируемой статье на способ расчета годового расхода утилизируемой теплоты. Не оговаривая режим работы теплоутилизатора, авторы приняли его по умолчанию круглогодично неуправляемым. Приближенно-синусоидальное изменение t н (t) ошибочно построено не по средним значениям температур («норме»), а по максимальным и минимальным, т.е. имеет существенно завышенную амплитуду. Соответственно этому величина утилизируемой теплоты тоже завышена. Для Санкт-Петербурга, например, t н.min.cp = -8,1 °C , а расчетная зимняя температура t нрх = -26 °C. Аналогично в теплый период года t н.max.cp = 18,1 °С , тогда как расчетная летняя температура t нрт = 24,6 °С. Также, среднегодовая температура t н.ср.год = 4,4 °С далеко не равна полусумме принятых расчетных в холодное и теплое время года (-0,6 °С). Возражение вызывает неучет режимов работы и оттайки, приводящий к завышению расхода утилизируемой теплоты, и отсутствие учета переменной эффективности аппарата.

Эффективность конструкции утилизатора можно анализировать с точки зрения выбора: оптимальной поверхности F, рядности i или глубины насадки аппарата h. Обозначим относительную рядность или глубину аппарата как h в долях от той, при которой θ ту = 1, а количество теплоты Q ту = Q т.max . При приближенно экспоненциальной зависимости Q ту ≈ 1 - exp(-h) эффективность θ ту = 1 достигается при условии h = 4 (с точностью до 1 %). Примем, что годовой расход утилизируемой теплоты приближенно экспоненциально зависит от величины h (рис. 1а), тогда как стоимость утилизатора и его аэродинамическое сопротивление от h зависят приближенно линейно.

Тогда искомый срок окупаемости можно представить в виде (функции от безразмерного параметра h, имеющей следующий вид:

где a 1 , a 2 , a 3 , a 4 — некоторые корректирующие коэффициенты, принятые постоянными.

В результате вычисления производной, приравненной нулю, получаем, что оптимум (минимум T факт) соответствует случаю, когда h = 1, а эффективность теплоутилизатора q ту.опт = 0,63 (из свойств экспоненциальной функции). Вышеописанные зависимости иллюстрирует график на рис. 3, где показан приближенный характер изменения всех составляющих приведенных затрат и срока окупаемости дополнительных затрат на подсистему утилизации от относительной глубины h, относительной толщины d или относительной поверхности F насадки или пластин такого аппарата.

Сравнивая результаты приближенной оптимизации по формуле (14) с данными о характеристиках отечественных ВРТ при L = 5-38 тыс. м 3 /ч, δ = 0,2 м, v фр = 2,2 м/с, F/L = 300-425 м 2 / (м 3 /с), F/F фр = 490-660 м 2 /м 2 , получили при насадке из алюминиевой фольги расчетную эффективность θ ту = 0,77, при насадке из технического картона — θ ту = 0,65 (в последнем случае близко к оптимальной эффективности, вычисленной при вышеописанных допущениях). Более подробно зависимости, характеризующие экономический эффект для различных теплоутилизаторов при разной производительности, сменности работы и с разной насадкой, можно определить по данным .

К аналогичным выводам об оптимальной эффективности теплоутилизатора пришли авторы «Справочника» . В частности, они отмечают: «...Доведение эффективности утилизатора до величины, большей 0,65 при односменной работе и 0,75 при трехсменной, во всех случаях приводит к уменьшению экономического эффекта, т.к. сбережение теплоты при этом достигается за счет чрезмерного роста приведенных затрат на устройство и эксплуатацию утилизаторов и расхода металла. Наибольшее влияние на экономический эффект оказывает продолжительность работы системы — при трехсменной ее работе эффект резко возрастает. Рост эффекта при увеличении расхода воздуха объясняется в основном непропорциональным ростом удельных затрат на оборудование и занимаемую им площадь.» . В этом же справочнике указано, что по данным РПИ в климатических условиях Прибалтики для пластинчатого утилизатора СВ свинарника-откормочника оптимальная эффективность не должна превышать 0,50.

Продолжение в следующем номере.

Введение

Литература

Введение

В настоящее время в использовании вторичных энергетических ресурсов имеются значительные резервы.

Задача максимального использования ВЭР имеет не только экономическое, но и социальное значение, поскольку снижение расходов топлива, обеспечиваемое использованием ВЭР, уменьшает вредные выбросы и снижает загрязнение окружающей среды.

ВЭР нельзя рассматривать как даровые дополнительные источники энергии. Они являются результатом энергетического несовершенства технологических производств, поэтому необходимо стремиться к снижению их выхода за счет более полного использования топлива в самом технологическом агрегате. В этом состоит основная задача повышения эффективности теплотехнических производств, наиболее полного использования ВЭР, как неизбежного спутника этих процессов.

Пределом идеальной организации производств является создание безотходная по материалам и энергии технологии.

1. Классификация вторичных энергоресурсов

Предприятие черной металлургии потребляет большое количество топлива, тепловой и электрической энергии. Наряду с этими технологиями металлургического производства характеризуется значительным выходом вторичных энергетических ресурсов (ВЭР).

По виду энергии ВЭР делятся на горючие (топливные), тепловые и избыточного давления.

Горючие ВЭР - побочные газообразные продукты технологических процессов, которые могут быть использованы в качестве энергетического или технологического топлива.

Тепловые ВЭР - физическая теплота основных и побочных продуктов, отходящих газов технологических агрегатов, а так же систем охлаждения их элементов.

ВЭР избыточного давления - потенциальная энергия газов, выходящих из технологических агрегатов с избыточным давлением, которое может быть использовано других видов энергии.

2. Виды ВЭР и способы их использования

Носители ВЭР

Энергетический потенциал

Способ использования

Газообразные отходы Низкая теплота сгорания Сжигание в топливо использующих установках
Тепловые

отходящие газы, готовая продукция и отходы производства, теплоносители охлаждения

отработанный и попутный пар

энтальпия

выработка в теплоутилизиционных установках водяного пара, горячей воды

покрытие тепло потребности, выработка электроэнергии в конденсоционном или теплофикационном турбоагрегате

избыточное давление

газы с избыточным давлением работа изоэнтропного расширения выработка электроэнергии в газовом утилизационном турбоагрегате

Выход ВЭР - количество ВЭР, образующиеся в технологическом агрегате.

Выход ВЭР для горючих: q гор = m Qр;

для тепловых: qт =mі;

для ВЭР избыточного давления: qи = ml;

где q - выход соответствующих ВЭР, m - удельное или часовое количество энергоносителя, Qр - низшая теплота сгорания, і -

энтальпия энергоносителя, l - работа изоэнтропийного расширения газов.

Характеристика горючих ВЭР черной металлургии:

Доменный газ образуется при выплавке чугуна в доменных печах. Его выход и химический состав зависят от свойств шихты и топлива, режима работы печи, способов интенсификации процесса. Доля негорючих компонентов азота и углекислого газа в доменном газе составляет 70%. При сжигании доменного газа максимальная температура продуктов сгорания равна 1487 С. На выходе из печи газ загрязнен колошниковой пылью. Использовать доменный газ в качестве топлива можно только после его очистки.

Ферросплавный газ - образуется при выплавке ферросплавов в рудовосстановительных печах. Суммарное содержание сероводорода и оксида серы (4) в пересчете на оксид серы (4) не должно превышать 1 г\м3 .

Конвертерный газ - образуется при выплавке стали в кислородных конвертерах. Газ в основном состоит из оксида углерода. В качестве топливных ВЭР конвертерный газ используется при отводе без дожигания.

Ценное технологическое и энергетическое топливо.

Коксовый газ - образуется при коксовании угольной шихты. В черной металлургии в качестве топлива используется после извлечения химических продуктов. Компоненты коксового газа: водород, кислород, метан, азот, углекислый и угарный газы.

Характеристика тепловых ВЭР.

Физическая теплота готового продукта из шлаков.

Из печей и агрегатов металлургического производства готовый продукт и шлак выходят с высокой температурой. В некоторых случаях эта теплота ВЭР. Теплота жидкого чугуна используется в последующих переделах (мартеновские печи, кислородные конвертеры).

Теплота жидкой стали используется в прокатном производстве за счет горячего посада слитков. Физическая теплота вторичных газов.

Использование физической теплоты коксового газа возможна после сухой очистки. Наибольшую температуру имеют конверторные газы.

Отходящие газы мартеновских печей состоят из продуктов сгорания топлива и газообразных компонентов химических реакций, протекающих в технологическом процессе. К тепловым ВЭР относятся энергоносители в виде водяного пара, горячей воды и вентиляционных выбросов.

3.Экономия топлива при использовании теплоты отходящих газов

Использование физической теплоты отходящих газов осуществляется по трем схемам: технологической (замкнутой и разомкнутой), энергетической и комбинированной.

Технологическая схема предусматривает использование этой теплоты для технологических процессов, как правило, в той же теплотехнологической установке. По такой схеме нагревают воздух, а также в некоторых случаях и газообразные топлива, предварительно подогревают обрабатываемый в печи материал или производят химико-термическую переработку некоторых шихтовых материалов, используемых в данном процессе. При отоплении печей природным газом к технологической схеме относится также термохимическая регенерация теплоты отходящих газов, используемая для конверсии метана. Описанные схемы являются замкнутыми, они обеспечивают экономию топлива в самом технологическом агрегате (рис.1). Теплоту отходящих газов можно использовать и в другой печной установке с меньшим температурным уровнем процесса. Такая схема является разомкнутой (рис.2). В этом случае экономится топливо в установке, использующей теплоту отходящих газов. Возможно также последовательное использование теплоты в основном и в низкотемпературных агрегатах.

Рис.1. Замкнутые технологические схемы использования теплоты отходящих газов: а - для подогрева воздуха; б - для предварительного нагрева материала; 1 - печь; 2 - отвод газов из печи; 3 - рекуператор; 4 - подвод воздуха в рекуператор; 5 - отвод дыма: 6 - подвод воздуха в печь; 7 - подвод топлива в печь; 8 - выдача материала; 9 - подача подогретого материала в печь; 10 - подача холодного материала.

Рис.2. Разомкнутая технологическая схема использования теплоты отходящих газов: 1 - печь; 2 - подвод топлива; 3 - подвод воздуха; 4 - подача материала; 5 - отвод газов из печи: 6 - технологическая установка второй ступени; 7 - отвод газов установки второй ступени; 8 - выдача материала.

Применение замкнутой технологической схемы повышает эффективность использования топлива в технологическом агрегате, т.е. снижает выход ВЭР.

Энергетическая схема предусматривает использование теплоты отходящих газов в энергетических установках для производства каких-либо энергоносителей (теплоты, электроэнергии, холода и др.). Возможно последовательное размещение нескольких теплоиспользующих установок, например, котлов-утилизаторов и экономайзеров для подогрева сетевой воды. Таким образом, энергетическая схема является разомкнутой и позволяет сэкономить топливо, расходуемое на производство соответствующих видов и количеств энергоносителей за счет использования ВЭР технологического агрегата (рис.3).

Комбинированная схема сочетает технологическую и энергетическую схемы и обеспечивает как уменьшение выхода ВЭР, так и более эффективное их использование (рис.4).

Каждая из схем имеет достоинства и недостатки. Основным критерием для их сравнения является достигаемая экономия топлива. Однако этот критерий еще не дает основания для окончательной оценки схем. Здесь необходим технико-экономический расчет, учитывающий капитальные и эксплуатационные затраты, устойчивость потребления энергоносителей, полученных за счет теплоты отходящих газов, и др.

Рис.3. Энергетические схемы использования теплоты отходящих газов: а - для получения пара; б - для получения пара и горячей воды; 1 - печь; 2 - подвод воздуха; 3 - подвод топлива; 4 - отвод газов из печи; 5 – КУ; 6 - отвод пара из КУ; 7 - отвод дыма из КУ; 8 - подвод питательной воды в КУ; 9 - подогреватель сетевой воды; 10 - подвод воды в подогреватель; 11 - отвод горячей воды.

Рис.4. Комбинированная схема использования теплоты отходящих газов: 1 - печь; 2 - отвод газов из печи; 3 - рекуператор; 4 - подвод воздуха в рекуператор; 5 - отвод дыма из рекуператора; 6 - отвод пара из КУ; 7 - КУ; 8 - подвод питательной воды в КУ; S - подвод воздуха в печь; 10 - подвод топлива в печь.

4. Вторичные энергетические ресурсы топливно-энергетического комплекса

Мировая добыча угля составляет 2025 млн. т в год (4033 шахты). При этом образуется около 6 млрд. т твердых, жидких и газообразных отходов, что составляет около 3 т отходов на 1 т угля (из них отвальной породы 2,5 т). При подземной добыче угля удельный выход породы, выдаваемой из шахт на поверхность составляет около 0,3 т на 1т добываемого угля. Собственно горючая масса в угольной промышленности составляет всего 20% горной массы. Доля угля в производстве электроэнергии составляет 37% (1980 г).

Сланец имеет не меньшее значение, чем уголь. Около 40% сланца добывается открытым способом и 60% из шахт.

Отходы добычи и обогащения сланцев состоят из вскрышных пород, отходов обогащения.

Разработан проект переработки сланцев (Швеция), предусматривающий добычу открытым способом и в шахтах 6 млн. т сланца в год и производство 1300 т урана ежегодно. Схема переработки сланца предусматривает первичное дробление, обогащение в тяжелых средах для удаления известняка, обработку сланца серной кислотой в барабанных аппаратах, выдержку обработанного материала в штабелях, противоточное выщелачивание серной кислотой методом просачивания (удаление урана 79%), фильтрирование раствора, экстракцию из него урана органическим растворителем, реэкстрацию раствором карбоната натрия или аммония и осаждение уранового концентрата. Осадок выщелачивания смешивают с известняком и направляют в отвал.

Дальнейшие этапы усовершенствования технологии переработки сланцев:

энергетическое использование органического материала путем сжигания или газификации;

разработка технологии получения алюминия из сланца;

полное комплексное извлечение цветных металлов.

Газовые выбросы промышленных предприятий как ВЭР.

Развитие энергетики, металлургии, транспорта, химии и нефтехимии приводит к быстро возрастающему потреблению воздуха, используемого в качестве сырья в процессе окисления. Предприятия химической, нефтехимической, пищевой, фармацевтической и ряда других отраслей промышленности потребляют большие количества чистого воздуха и выбрасывают огромные объемы отработанных кислородосодержащих газов и загрязненного вентиляционного воздуха.

Перспективным является метод очистки воздуха от микропримесей - объединение энергетических и химических комплексов. Рассмотрим возможности объединения этих процессов путем использования отработанного воздуха промышленных предприятий в качестве окислителя, например дутьевого воздуха в топках котлов. В этом случае обеспечивается дешевая очистка загрязненного воздуха от токсичных примесей и отпадает необходимость в потреблении чистого воздуха для окисления топлива.

Литература

1. Ласкорин Б.Н. Безотходная технология минерального сырья. - М.: " Недра", 2004г. - 334с.

2. Розенгарт Ю.И. Вторичные энергетические ресурсы черной металлургии и их использование. - К.: " Высшая школа", 2008г. - 328с.

3. Рихтер Л.А. Охрана водного и воздушного бассейнов от выбросов ТЭС. Под редакцией Непорожного. - М.: " Энергоиздат", 2001г. - 296с.

4. Сигал И.Я. Защита воздушного бассейна при сжигании топлива. - Л.: " Недра", 1987г. - 294с.

5. Толочко А.И. Защита окружающей среды от выбросов предприятий черной металлургии. - М.: " Металлургия" 2001г. - 95с.

Затраты теплоты на подогрев санитарной нормы приточного наружного воздуха при современных методах теплозащиты ограждающих конструкций составляют в жилых домах до 80 % тепловой нагрузки на отопительные приборы, а в общественно-административных зданиях - более 90%. Поэтому энергосберегающие системы отопления в современных конструкциях зданий могут быть созданы только при условии

утилизации теплоты вытяжного воздуха на нагрев санитарной нормы приточного наружного воздуха.

Также успешен опыт применения в административном здании в Москве установки утилизации с насосной циркуляцией промежуточного теплоносителя - антифриза.

При расположении приточных и вытяжных агрегатов на расстоянии более 30 м друг от друга система утилизации с насосной циркуляцией антифриза является наиболее рациональной и экономичной. В случае расположения их рядом возможно еще более эффективное решение. Так в климатических районах с мягкими зимами, когда температура наружного воздуха не опускаются ниже -7 °С, широко применяются пластинчатые теплоутилизаторы.

На рис. 1 показана конструктивная схема пластинчатого рекуперативного (теплоотдача осуществляется через разделительную стенку) теплоутилизационного теплообменника. Здесь показан (рис. 1, а) «воздухо-воздушный» теплоутилизатор, собранный из пластинчатых каналов, которые могут изготавливаться из тонкой листовой оцинкованной стали, алюминия и др.

Рисунок 1. а - пластинчатые каналы, в которых сверху над разделительными стенками каналов поступает вытяжной воздух L y , а горизонтально-приточный наружный воздух L п.н; б - трубчатые каналы, в которых сверху в трубках проходит вытяжной воздух L y , а горизонтально в межтрубном пространстве проходит приточный наружный воздух L п.н

Пластинчатые каналы заключаются в кожух, имеющий фланцы для присоединения к приточным и вытяжным воздуховодам.

На рис. 1, б показан «воздухо-воздушный» теплообменник из трубчатых элементов, которые могут быть также изготовлены из алюминия, оцинкованной стали, пластмассы, стекла и др. Трубы закрепляются в верхние и нижние трубные решетки, что формирует каналы для прохода вытяжного воздуха. Боковые стенки и трубные решетки образуют каркас теплообменника, с открытыми фасадными сечениями, которые присоединяются к воздуховоду поступления приточного наружного воздуха L п.н.

Благодаря развитой поверхности каналов и устройства в них турбулизирующих воздух насадок в таких «воздухо-воздушных» теплообменниках достигается высокая теплотехническая эффективность θ t п.н (до 0,75), и это является главным достоинством таких аппаратов.

Недостатком этих рекуператоров является необходимость предподогрева приточного наружного воздуха в электрокалориферах до температуры не ниже -7 °С (во избежание замерзания конденсата на стороне влажного вытяжного воздуха).

На рис. 2 показана конструктивная схема приточно-вытяжного агрегата с пластинчатым утилизатором теплоты вытяжного воздуха L у на нагрев приточного наружного воздуха L п.н. Приточный и вытяжной агрегаты выполняются в едином корпусе. Первыми на входе приточного наружного L п.н и удаляемого вытяжного L у воздуха установлены фильтры 1 и 4. Оба очищенных потока воздуха от работы приточного 5 и вытяжного 6 вентиляторов проходят через пластинчатый теплоутилизатор 2, где энергия отепленного вытяжного воздуха L у передается холодному приточному L п.н.

Рисунок 2. Конструктивная схема приточного и вытяжного агрегатов с пластинчатым утилизатором, имеющим обводной воздушный канал по приточному наружному воздуху: 1 - воздушный фильтр в приточном агрегате; 2 - пластинчатый утилизационный теплообменник; 3 - фланец присоединения воздушного тракта поступления вытяжного воздуха; 4 - фильтр карманный для очистки вытяжного воздуха L у; 5 - приточный вентилятор с электродвигателем на одной раме; 6 - вытяжной вентилятор с электродвигателем на одной раме; 7 - поддон сбора из каналов прохождения вытяжного воздуха сконденсированной влаги; 8 - трубопровод отвода конденсата; 9 - обводной воздушный канал для прохода приточного воздуха L п.н; 10 - автоматический привод воздушных клапанов в обводном канале; 11 - калорифер догрева приточного наружного воздуха, питаемый горячей водой

Как правило, вытяжной воздух имеет повышенное влагосодержание и температуру точки росы не ниже +4 °С. При поступлении в каналы теплоутилизатора 2 холодного наружного воздуха с температурой ниже +4 °С на разделительных стенках установится температура, при которой на части поверхности каналов со стороны движения удаляемого вытяжного воздуха будет происходить конденсация водяных паров.

Образовавшийся конденсат под воздействием потока воздуха L у, будет интенсивно стекать в поддон 7, откуда по присоединенному к патрубку 8 трубопроводу отводится в канализацию (или бак-накопитель).

Для пластинчатого утилизатора характерно следующее уравнение теплового баланса переданной теплоты к наружному приточному воздуху:

где Q ту - утилизируемая приточным воздухом теплоэнергия; L у, L п.н - расходы отепленного вытяжного и наружного приточного воздуха, м 3 /ч; ρ у, ρ п.н - удельные плотности отепленного вытяжного и наружного приточного воздуха, кг/м 3 ; I y 1 и I y 2 - начальная и конечная энтальпия отепленного вытяжного воздуха, кДж/кг; t н1 и t н2 , с р - начальные и конечные температуры, °С, и теплоемкость, кДж/(кг · °С), наружного приточного воздуха.

При низких начальных температурах наружного воздуха t н.х ≈ t н1 на разделительных стенках каналов выпадающий из вытяжного воздуха конденсат не успевает стекать в поддон 7, а замерзает на стенках, что приводит к сужению проходного сечения и увеличивает аэродинамическое сопротивление проходу вытяжного воздуха. Это увеличение аэродинамического сопротивления воспринимается датчиком, который передает команду на привод 10 на открытие воздушных клапанов в обводном канале (байпасе) 9.

Испытания пластинчатых утилизаторов в климате России показали, что при снижении температуры наружного воздуха до t н.х ≈ t н1 ≈ -15 °С, воздушные клапаны в байпасе 9 полностью открыты и весь приточный наружный воздух L п.н проходит, минуя пластинчатые каналы теплоутилизатора 2.

Нагрев приточного наружного воздуха L п.н от t н.х до t п.н осуществляется в калорифере 11, питаемом горячей водой из центрального источника теплоснабжения. В этом режиме Q ту, вычисляемое по уравнению (9.10), равно нулю, так как через присоединенный теплоутилизатор 2 проходит только вытяжной воздух и I y 1 ≈ I y 2 , т.е. утилизация теплоты отсутствует.

Вторым методом предотвращения замерзания конденсата в каналах теплообменника 2 является электрический предподогрев приточного наружного воздуха от t н.х до t н1 = -7 °С. В расчетных условиях холодного периода года в климате Москвы холодный приточный наружный воздух в электрокалорифере нужно нагревать на ∆t т.эл = t н1 - t н.х = -7 + 26 = 19 °С. Нагрев приточного наружного воздуха при θ t п.н = 0,7 и t у1 = 24 °С составит t п.н = 0,7 · (24 + 7) - 7 = 14,7 °С или ∆t т.у = 14,7 + 7 = 21,7 °С.

Расчет показывает, что в этом режиме нагрев в теплоутилизаторе и в калорифере практически одинаков. Использование байпаса или электрического предподогрева значительно снижает теплотехническую эффективность пластинчатых теплообменников в системах приточно-вытяжной вентиляции в климате России.

Для устранения этого недостатка отечественными специалистами разработан оригинальный метод быстрого периодического размораживания пластинчатых теплоутилизаторов путем подогрева удаляемого вытяжного воздуха, обеспечивающий надежную и энергоэффективную круглогодовую работу агрегатов.

На рис. 3 показана принципиальная схема установки утилизации теплоты вытяжного воздуха X на нагрев приточного наружного воздуха L п.н с быстрым устранением обмерзания каналов 2 для улучшения прохода удаляемого воздуха через пластинчатый теплоутилизатор 1.

Воздуховодами 3 теплоутилизатор 1 соединен с трактом прохождения приточного наружного воздуха L п.н, а воздуховодами 4 с трактом прохождения удаляемого вытяжного воздуха L у.

Рисунок 3. Принципиальная схема применения пластинчатого теплоутилизатора в климате России: 1 - пластинчатый теплоутилизатор; 2 - пластинчатые каналы для прохода холодного приточного наружного воздуха L п.н и теплого вытяжного удаляемого воздуха L у; 3 - присоединительные воздуховоды прохода приточного наружного воздуха L п.н; 4 - присоединительные воздуховоды прохода удаляемого вытяжного воздуха L у; 5 - калорифер в потоке удаляемого воздуха L у на входе в каналы 2 пластинчатого теплообменника 1,6- автоматический клапан на трубопроводе подачи горячей воды G w г; 7 - электрическая связь; 8 - датчик контроля сопротивления воздушного потока в каналах 2 для прохода вытяжного воздуха L у; 9 - отвод конденсата

При низких температурах приточного наружного воздуха (t н1 = t н. x ≤ 7 °С) через стенки пластинчатых каналов 2 теплота от вытяжного воздуха передается полностью теплоте, отвечающей уравнению теплового баланса [см. формулу (1)]. Снижение температуры вытяжного воздуха происходит с обильной конденсацией влаги на стенках пластинчатых каналов. Часть конденсата успевает стечь из каналов 2 и по трубопроводу 9 удаляется в канализацию (или бак-накопитель). Однако большая часть конденсата замерзает на стенках каналов 2. Это вызывает возрастание перепада давления ∆Р у в потоке удаляемого воздуха, замеряемого датчиком 8.

При возрастании ∆Р у до настроенной величины от датчика 8 через проводную связь 7 последует команда на открытие автоматического клапана 6 на трубопроводе подачи горячей воды G w г в трубки калорифера 5, установленного в воздуховоде 4 поступления удаляемого вытяжного воздуха в пластинчатый утилизатор 1. При открытом автоматическом клапане 6 в трубки калорифера 5 поступит горячая вода G w г, что вызовет повышение температуры удаляемого воздуха t y 1 до 45-60 °С.

При прохождении по каналам 2 удаляемого воздуха с высокой температурой произойдет быстрое оттаивание со стенок каналов наледей и образующийся конденсат по трубопроводу 9 стечет в канализацию (или в бак-накопитель конденсата).

После оттайки наледей перепад давлений в каналах 2 понизится и датчик 8 через связь 7 подаст команду на закрытие клапана 6 и подача горячей воды в калорифер 5 прекратится.

Рассмотрим процесс утилизации теплоты на I-d диаграмме, представленный на рис. 4.

Рисунок 4. Построение на I-d-диаграмме режима работы в климате Москвы установки утилизации с пластинчатым теплообменником и размораживанием его по новому методу (по схеме на рис. 3). У 1 -У 2 - расчетный режим извлечения теплоты из вытяжного удаляемого воздуха; Н 1 - Н 2 - нагрев утилизируемой теплотой приточного наружного воздуха в расчетном режиме; У 1 - У под 1 - нагрев вытяжного воздуха в режиме размораживания от наледей пластинчатых каналов прохождения удаляемого воздуха; У 1. раз - начальные параметры удаляемого воздуха после отдачи теплоты на оттаивание наледей на стенках пластинчатых каналов; H 1 -Н 2 - нагрев приточного наружного воздуха в режиме размораживания пластинчатого утилизационного теплообменника

Проведем оценку влияния метода размораживания пластинчатых теплоутилизаторов (по схеме на рис. 3) на теплотехническую эффективность режимов утилизации теплоты вытяжного воздуха на следующем примере.

ПРИМЕР 1. Исходные условия: В крупном московском (t н.х = -26 °С) производственно-административном здании в системе приточно-вытяжной вентиляции смонтирована теплоутилизационная установка (ТУУ) на базе рекуперативного пластинчатого теплообменника (с показателем θ t п.н = 0,7). Объем и параметры удаляемого вытяжного воздуха в процессе охлаждения составляют: L у = 9000 м 3 /ч, t у1 = 24 °С, I y 1 = 40 кДж/кг, t р.у1 = 7 °С, d у1 = 6,2 г/кг (см. построение на I-d-диаграмме на рис. 4). Расход приточного наружного воздуха L п.н = 10 000 м 3 /ч. Размораживание теплоутилизатора производится методом периодического повышения температуры удаляемого воздуха, как это показано на схеме рис. 3.

Требуется: Установить теплотехническую эффективность режимов утилизации теплоты с использованием нового метода периодической оттайки пластин аппарата.

Решение: 1. Вычисляем температуру нагретого утилизируемой теплотой приточного наружного воздуха в расчетных условиях холодного периода года при t н.х = t н1 = -26 °С:

2. Вычисляем количество утилизируемой теплоты за первый час работы установки утилизации, когда обмерзание пластинчатых каналов не повлияло на теплотехническую эффективность, но повысило аэродинамическое сопротивление в каналах прохождения удаляемого воздуха:

3. Через час работы ТУУ в расчетных зимних условиях на стенках каналов накопился слой инея, который вызвал повышение аэродинамического сопротивления ∆Р у. Определим возможное количество льда на стенках каналов прохода вытяжного воздуха через пластинчатый теплоутилизатор, образованного в течение часа. Из уравнения теплового баланса (1) вычислим энтальпию охлажденного и осушенного вытяжного воздуха:

Для рассматриваемого примера по формуле (2) получим:

На рис. 4 представлено построение на I-d-диаграмме режимов нагрева приточного наружного воздуха (процесс H 1 - H 2) утилизируемой теплотой вытяжного воздуха (процесс У 1 -У 2). Построением на I-d-диаграмме получены остальные параметры охлажденного и осушенного вытяжного воздуха (см. точку У 2): t у2 = -6,5 °С, d у2 = 2,2 г/кг.

4. Количество выпавшего из вытяжного воздуха конденсата вычисляется по формуле:

По формуле (4) вычисляем количество холода, затраченного на понижение температуры льда: Q = 45 · 4,2 · 6,5/3,6 = 341 Вт · ч. На образование льда затрачивается следующее количество холода:

Общее количество энергии, идущей на образование наледей на разделительной поверхности пластинчатых теплоутилизаторов, составит:

6. Из построения на I-d-диаграмме (рис. 4) видно, что при противоточном движении по пластинчатым каналам приточного L п.н и вытяжного L у воздушных потоков на входе в пластинчатый теплообменник наиболее холодного наружного воздуха по другую сторону разделительных стенок пластинчатых каналов проходит охлажденный до отрицательных температур вытяжной воздух. Именно в этой части пластинчатого теплообменника и наблюдаются интенсивные образования наледей и инея, которые будут перекрывать каналы для прохода вытяжного воздуха. Это вызовет повышение аэродинамического сопротивления.

Датчик контроля при этом подаст команду на открытие автоматического клапана поступления горячей воды в трубки теплообменника, смонтированного в вытяжном воздуховоде до пластинчатого теплообменника, что обеспечит нагрев вытяжного воздуха до температуры t у.под.1 = +50 °С.

Поступление горячего воздуха в пластинчатые каналы обеспечило за 10 мин оттайку замерзшего конденсата, который в жидком виде удаляется в канализацию (в бак-накопитель). За 10 мин нагрева вытяжного воздуха затрачено следующее количество теплоты:

или по формуле (5) получим:

7. Подведенная в калорифере 5 (рис. 3) теплота частично расходуется на растаивание наледей, что по расчетам в п. 5 потребует Q т.рас = 4,53 кВт · ч теплоты. На передачу теплоты к приточному наружному воздуху из затраченной теплоты в калорифере 5 на нагрев вытяжного воздуха останется теплоты:

8. Температура подогретого вытяжного воздуха после затраты части теплоты на размораживание вычисляется по формуле:

Для рассматриваемого примера по формуле (6) получим:

9. Подогретый в калорифере 5 (см. рис. 3) вытяжной воздух будет способствовать не только размораживанию наледей конденсата, но и увеличению передачи теплоты к приточному воздуху через разделительные стенки пластинчатых каналов. Вычислим температуру нагретого приточного наружного воздуха:

10. Количество теплоты, переданной на нагрев приточного наружного воздуха в течение 10 мин размораживания, вычисляется по формуле:

Для рассматриваемого режима по формуле (8) получим:

Расчет показывает, что в рассматриваемом режиме размораживания нет потерь теплоты, так как часть теплоты подогрева из удаляемого воздуха Q т.у =12,57 кВт · ч переходит на дополнительный догрев приточного наружного воздуха L п.н до температуры t н2.раз = 20,8 °С, вместо t н2 = +9 °С при использовании только теплоты вытяжного воздуха с температурой t у1 = +24 °С (см. п. 1).



Loading...Loading...