Электрическая схема управления двигателем. Типовые схемы управления электроприводом

ВАЖНО! Перед подключением электродвигателя необходимо убедится в правильности в соответствии с его .

  1. Условные обозначения на схемах

(далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.

У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.

Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.

В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке ), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).

Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.

Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».

  1. Схема прямого включения электродвигателя

Данная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.

Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.

  1. Схема подключения электродвигателя через магнитный пускатель

Эту схему так же часто называют схемой простого пуска электродвигателя , в ней, в отличии от предыдущей, кроме силовой цепи появляется так же цепь управления.

При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2 ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.

  1. Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)

Что бы поменять направление вращения трехфазного электродвигателя необходимо поменять местами любые две питающие его фазы:

При необходимости частой смены направления вращения электродвигателя применяется :

В данной схеме применяется два магнитных пускателя (KM-1, KM-2) и трехкнопочный пост, магнитные поскатели применяемые в данной схеме кроме нормально-разомкнутого блок-контакта должны так же иметь и нормально замкнутый контакт.

При нажатии кнопки SB-2 (кнопка «ПУСК 1») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1 который шунтирует кнопку SB-2 и размыкает свой блок-контакт KM-1.2 который защищает электродвигатель от включения в обратную сторону (при нажатии кнопки SB-3) до его предварительной остановки, т.к. попытка запуска электродвигателя в обратную сторону без предварительного отключения пускателя KM-1 приведет к короткому замыканию. Что бы запустить электродвигатель в обратную сторону необходимо нажать кнопу «СТОП» (SB-1), а затем кнопку «ПУСК 2» (SB-3) которая запитает катушку магнитного пускателя KM-2 и запустит электродвигатель в обратную сторону.

10

МИНИСТЕРСТВО ОБРАЗОВАНИЯ УКРАИНЫ

СЕВАСТОПОЛЬСКОЕ ВЫСШЕЕ ПРОФЕССИОНАЛЬНОЕ УЧИЛИЩЕ № 3

ВЫПУСКНАЯ ПИСЬМЕННАЯ

ЭКЗАМЕНАЦИОННАЯ РАБОТА

«Монтаж электрической схемы управления электродвигателем»

Учащегося группы 7/8:

Левицкого Павла Владимировича

По профессии:

электромонтажник судовой.

Руководитель:

Е.И.Коршунова

Севастополь.


1 Введение. Роль Электротехники в развитии судостроения

2 Основная часть

2.1 Схема управления электродвигателем

2.2 Основные элементы схемы и их назначение.

2.3 Принцип работы электрической схемы вентилятора

2.4 Технология монтажа электрической схемы

3. Материалы, используемые для монтажа схемы

4. Инструменты

5. Техника безопасности

Литература


1. Введение. Роль электротехники в развитии судостроения

Электротехника в судостроении имеет очень большое значение. Эта отрасль науки и техники, связанная с получением, преобразованием и использованием электрической энергии.

В судостроении применяются электрические и магнитные явления. На судах прокладываются многокилометровые артерии электропроводок, монтируются многочисленные электроприводы судовых механизмов, устанавливаются и настраиваются современные автоматические устройства, навигационная и радиотехническая аппаратура.

От надёжности электротехнических устройств зависит надёжность и долговечность спущенного на воду судна.

В 1832 году Фарадей открыл закон электромагнитной индукции и тем самым положил начало электромашиностроению. Годом рождения судового электропривода можно по праву считать 1838 год, когда русский учёный Б.С.Якоби создал первую в мире гребную электрическую установку. Изготовленный им электродвигатель постоянного тока был установлен на небольшом катере и испытан на Неве. Питание двигатель получал от гальванической батареи. Очень слабая энергетическая база в первой половине 19 века тормозила развитие электропривода, и электроэнергия на судах применялась только для освещения.

Первые серьёзные работы по становлению судового электропривода на российских судах были предприняты во второй половине 19 века. Так в 1886 году на крейсерах «Адмирал Нахимов», «Адмирал Корнилов», «Лейтенант Ильин» были использованы электрические вентиляторы, а в 1892 году на броненосном крейсере «Двенадцать апостолов» впервые в мировой практике был установлен электропривод рулевого устройства. Использование электродвигателей для привода грузоподъёмных устройств было начато в 1897 году установкой электрической лебёдки на транспортном судне «Европа». В последующие годы производится электрификация рулевых и якорных устройств на крейсерах «Громобой», «Паллада» и других.

Подлинным переворотом в развитии судовой энергетики явились работы русского изобретателя трёхфазного тока М.О. Доливо-Добровольского. Созданные им синхронные генераторы, трёхфазный трансформатор и асинхронные двигатели преобразили судовую энергетическую установку. С 1908 года на судах стал внедряться переменный ток, что давало большие технические и экономические преимущества. На крейсере «Баян» и минном заградителе «Амур» были установлены водоотливные насосы с приводом от асинхронных двигателей. Построенные по проекту академика А.Н. Крылова линейные корабли типа «Севастополь» имели судовую электростанцию трёхфазного тока.

Россией и Украиной создано огромное количество судов, оснащённых комплексными системами автоматизации с большой степенью электрификации судовых механизмов и систем. Значительно возросла мощность генераторных агрегатов судовых электростанций.

Электротехника очень важна на судах. Для обеспечения нормальных условий работы и обитаемости необходимо электрическое освещение. Нагревательные приборы предназначены для тепловыделения, необходимого для приготовления пищи, повышению температуры окружающего воздуха, жидкости, отдельных элементов, склонных к обмерзанию, а также удовлетворения бытовых нужд пассажиров и экипажа. От многих электроустройств зависит безопасность плавания груза, жизнь людей и сохранность груза, например, рулевое устройство, пожарный и осушительный насосы, радиостанция, навигационные приборы, сеть аварийного освещения и т.д. Электрификация механизмов, обслуживающих якорные, швартовые, грузовые и спасательные устройства позволяет автоматизировать эти трудоёмкие процессы.

2.Основная часть

2.1 Схема управления электродвигателем

Функциональная cхема управления асинхронным двигателем с короткозамкнутым ротором изображена на рисунке 1.

Рис.1.Функциональная схема управления асинхронным двигателем.

Трёхфазный переменный ток подаётся на автоматический выключатель, который применяется для подключения трёхфазного асинхронного двигателя. В автоматическом выключателе помимо системы контактов, имеются комбинированные расцепители (тепловой и электромагнитный), что обеспечивает автоматическое отключение при длительной перегрузке и коротком замыкании. От автоматического выключателя питание подаётся на магнитный пускатель. Магнитный пускатель - аппарат для дистанционного управления двигателем. Он осуществляет пуск, остановку и защиту двигателя от перегрева и сильного снижения напряжения. Основная часть магнитного пускателя - трёхполюсный электромагнитный контактор. От магнитного пускателя управление передаётся трёхфазному асинхронному электродвигателю переменного тока. Асинхронный двигатель отличается простотой конструкции и несложностью обслуживания. Он состоит из двух основных частей - статора – неподвижной части и ротора - вращающейся части. Статор имеет пазы, в которые укладывается трёхфазная статорная обмотка, подключаемая к сети переменного тока. Эта обмотка предназначена для создания вращающего кругового магнитного поля. Вращение кругового магнитного поля обеспечивается сдвигом по фазе друг относительно друга каждой из трёх систем трёхфазного тока на угол, равный 120 градусам.

Обмотки статора для подключения к напряжению сети 220В соединены треугольником (Рис.8). В зависимости от типа обмотки ротора, машины могут быть с фазным и короткозамкнутым ротором. Несмотря на то, что двигатель с фазным ротором обладает лучшими пусковыми и регулировочными свойствами, двигатель с короткозамкнутым ротором проще и надёжнее в эксплуатации, а также дешевле. Я выбрал двигатель с короткозамкнутым ротором, так как в настоящее время большинство изготовляемых промышленностью двигателей являются двигателями с короткозамкнутым ротором. Обмотка ротора выполняется по типу беличьего колеса, в пазы ротора заливают под давлением горячий алюминий. Проводники обмотки ротора соединены, образуя трёхфазную систему. Двигатель приводит в движение вентилятор. Вентиляторы, применяемые на судах, различают в зависимости от создаваемого ими напора. Смонтированный в схеме вентилятор является вентилятором низкого давления. Обычно вентиляторы не регулируются и не реверсируются, поэтому их привод имеет простейшую схему управления, которая сводится к пуску, остановке и защите.

Принципиальная электрическая схема нереверсивного управления трёхфазным асинхронным электродвигателем с короткозамкнутым ротором посредством автоматического выключателя и магнитного пускателя с двухполюсным тепловым реле представлена на рисунке 2.

От силового щита питание подаётся на автоматический выключатель с тепловыми и электромагнитными расцепителями максимального тока. Схема магнитного пускателя составлена с соблюдением рекомендуемых условных графических обозначений элементов схем автоматического управления двигателем. Здесь все элементы одного и того же аппарата обозначены одинаковыми буквами.


Рис.2.Схема управления асинхронным двигателем с короткозамкнутой обмоткой ротора.

Так, главные замыкающие контакты линейного трёхполюсного контактора, находящиеся в силовой цепи, его катушка и вспомогательные замыкающие контакты, находящиеся в цепи управления, обозначены буквами КЛ. Нагревательные элементы теплового реле, включённые в силовую цепь, и остающиеся размыкающие контакты с ручным возвратом этого же реле в исходное положение, которые находятся в цепи управления, обозначены буквами РТ. При включенном трёхполюсном выключателе после нажатия пусковой кнопки КнП включается катушка линейного трёхполюсного контактора КЛ и его главные замыкающие контакты КЛ присоединяют обмотку статора трёхфазного асинхронного двигателя АД к питающей сети в результате чего ротор приходит во вращение. Одновременно замыкаются вспомогательные замыкающие контакты КЛ, шунтирующие пусковую кнопку КнП, что позволяет её отпустить. Нажатие остановочной кнопки КнС отключает цепь питания катушки КЛ, вследствие чего якорь контактора выпадает, главные замыкающие контакты КЛ размыкаются и обмотка статора двигателя отключается от питающей сети.

2.2 Основные элементы схемы и их назначение

Управление приводами включает в себя пуск электродвигателя в работу, регулирование скорости вращения, изменение направления вращения, торможение и останов электродвигателя. Для управления приводами применяются электрические коммутационные аппараты, такие как автоматические и неавтоматические выключатели, контакторы и магнитные пускатели. Для защиты электродвигателей от ненормальных режимов (перегрузок и коротких замыканий) применяются автоматические выключатели, предохранители и тепловые реле.

Управление электродвигателями с короткозамкнутым ротором. На рис. 2.8 приведена схема управления асинхронным двигателем с короткозамкнутым ротором с помощью магнитного пускателя.

Рис. 2.8. с помощью магнитного пускателя: Q – выключатель; F – предохранитель;

КМ – магнитный пускатель, КК1 , КК2 – тепловое реле; SBC – SBT


Магнитные пускатели широко применяются для двигателей мощностью до 100 кВт. Они применяются в продолжительном иповторнократковременном режиме работы привода. Магнитный пускатель позволяет осуществлять дистанционный пуск. Для включения электродвигателя М первым включается выключатель Q . Пуск двигателя в работу осуществляется включением кнопочного выключателя SBС . Катушка (электромагнит включения) магнитного пускателя КМ КМ в главной цепи и в цепи управления. Вспомогательный контакт КМ SBС и обеспечивает продолжительную работу привода после снятия нагрузки нажатия с кнопочного выключателя. Для защиты электродвигателя от перегрузки в магнитном пускателе имеются тепловые реле КК1 и КК2 , включаемые в две фазы электродвигателя. Вспомогательные контакты этих реле включаются в цепь питания катушки КМ магнитного пускателя. Для защиты от коротких замыканий в каждой фазе главной цепи электродвигателя устанавливаются предохранители F . Предохранители могут устанавливаться и в цепи управления. В реальных схемах неавтоматический выключатель Q и предохранители F могут быть заменены автоматическим выключателем. Отключение электродвигателя осуществляется нажатием на кнопочный выключатель SBТ .

Простейшая схема управления электродвигателем может иметь только неавтоматический выключательQ и предохранителиF или автоматический выключатель.

Во многих случаях при управлении электроприводом необходимо изменять направление вращения электродвигателя. Для этого применяются реверсивные магнитные пускатели.

На рис. 2.9 приведена схема управления асинхронным электродвигателем с короткозамкнутым ротором с помощью реверсивного магнитного пускателя. Для включения электродвигателя М должен быть включен выключатель Q . Включение электродвигателя для одного направления, условно «Вперед», производится нажатием кнопочного выключателя SBС1 в цепи питания катушки КМ1 магнитного пускателя.При этом катушка (электромагнит включения) магнитного пускателя КМ1 получает питание от сети и замыкает контакты КМ1 в

главной цепи и в цепи управления. Вспомогательный контакт КМ1 в цепи управления шунтирует кнопочный выключатель SBС1 и обеспечивает продолжительную работу привода после снятия нагрузки нажатия с кнопочного выключателя.


Рис. 2.9. с помощью реверсивного магнитного пускателя: Q – выключатель; F – предохранитель; КМ1 , КМ2 – магнитный пускатель, КК1 , КК2 – тепловое реле; SBC1 , SBC2 – кнопочный выключатель включения двигателя; SBT – кнопочный выключатель отключения двигателя

Для пуска электродвигателя в противоположном направлении, условно

«Назад», необходимо нажать кнопочный выключатель SBС2 . Кнопочные выключатели SBС1 и SBС2 имеют электрическую блокировку, исключающую возможность одновременного включения катушек КМ1 и КМ2 . Для этого в цепь катушки КМ1 включается вспомогательный контакт пускателя КМ2 , а в цепь катушки КМ2 – вспомогательный контакт КМ1 .

Для отключения электродвигателя от сети при его вращении в любом направлении необходимо нажать на кнопочный выключатель SBТ . При этом цепь любой катушки и КМ1 и КМ2 разрывается, их контакты в главной цепи электродвигателя размыкаются, и электродвигатель останавливается.

Схема реверсивного включения может в обоснованных случаях применяться для торможения двигателя противовключением.

Управление электродвигателями с фазным ротором. На рис. 2.10 приведена схема управления асинхронным двигателем с фазным ротором.


>Рис. 2.10. Схема управления асинхронным двигателем

с фазным ротором : QF – выключатель; КМ – магнитный пускатель в цепи статора, КМ1 – КМ3 – магнитный пускатель ускорения; SBC – кнопочный выключатель включения двигателя;R – пусковой реостат; SBT – кнопочный выключатель отключения двигателя

>В приведенной схеме защита двигателя М от коротких замыканий и перегрузок осуществляется автоматическим выключателем QF . Для уменьшения пускового тока и увеличения пускового момента в цепь ротора включен трехступенчатый пусковой реостат R . Количество ступеней может быть различным. Пуск электродвигателя осуществляется линейным контактором КМ и контакторами ускорения КМ1 – КМ3 . Контакторы снабжены реле времени. После включения автоматического выключателя QF кнопочным выключателем SBC включается линейный контактор КМ , который мгновенно замыкает свои контакты в главной цепи и шунтирует контакты кнопочного выключателя SBC . Двигатель начинает вращаться при полностью введенном пусковом реостате R (механическая характеристика 1 на рис. 2.11). Точка П является точкой трогания.

Рис. 2.11. Механические характеристики асинхронного двигателя с фазным ротором : 1 , 2 , 3

при включении ступеней пускового реостата; 4 – естественная;

П – точка пуска;

Контакт реле времени КМ в цепи катушки контактора КМ1 с выдержкой времени t1 (рис. 2.12) включает контактор КМ1, который замыкает контакты первой ступени в цепи пускового реостата. С выдержкой времени t2включается контактор КМ2. Аналогично проходит процесс переключения ступеней пускового реостата R до перехода электропривода на естественную характеристику (кривая 4).

Изменение тока статора Iи частоты вращения ротора n2во время пуска электродвигателя показано на рис. 2.12.


Рис. 2.12. Изменение тока статора и частоты вращения ротора асинхронного двигателя с фазным ротором во время пуска

На естественной характеристике ток статора и частота вращения ротора достигают номинальных значений.

Остановка электродвигателя осуществляется кнопочным выключателем SBT.

Электрическая блокировка в приводах. В многодвигательных приводах или приводах механизмов, связанных общей технологической зависимостью, должна быть обеспечена определенная очередность включения и отключения электродвигателей. Это достигается применением механической или электрической блокировки. Электрическая блокировка осуществляется путем применения дополнительных вспомогательных контактов коммутационных аппаратов, участвующих в управлении приводами. На рис. 2.13 приведена схема блокировки последовательности пуска и остановки двух электродвигателей.

Рис. 2.13. : Q1 , Q2 – выключатель; F1 , F2 – предохранитель; КМ1 , КМ2 – магнитный пускатель, КК1 , КК2 – тепловое реле; SBC1 , SBC2 – кнопочный выключатель включения двигателя;SBT1 , SBT2 – кнопочный выключатель отключения двигателя; Q3 – вспомогательный выключатель


В схеме исключена возможность пуска электродвигателя М2 раньше пуска двигателя М1 . Для этого в цепь управления магнитного пускателя КМ2 , осуществляющего пуск и остановку электродвигателя М2 , включен замыкающий вспомогательный контакт КМ1 , связанный с пускателем КМ1 . В случае остановки электродвигателя М1 этот же контакт произведет автоматическое отключение двигателя М2 . При необходимости самостоятельного пуска электродвигателя при опробовании механизма в цепи управления имеется выключатель Q3 , который необходимо предварительно замкнуть. Включение электродвигателя М2 осуществляется кнопочным выключателем SBC2 , а отключение – SBТ2 . Включение двигателя М1 осуществляется выключателем SBC1 , а отключение – SBT1 . При этом отключается и выключатель М2 .

Регулирование скорости рабочего органа машины или механизма. Скорость рабочего органа машины можно изменить за счет применения редукторов или путем изменения частоты вращения электродвигателя. Частоту вращения электродвигателя можно изменить несколькими способами. В строительных машинах и механизмах применяют редукторы с зубчатой, ременной и цепной передачами, позволяющими изменять передаточное число. В приводах, где применяются двигатели с короткозамкнутым ротором, частоту вращения электродвигателя изменяют путем изменения числа пар полюсов. Для этих целей применяют либо электродвигатель с двумя обмотками статора, каждая из которых имеет разное количество пар полюсов, либо электродвигатель с переключением секций фазных обмоток статора.

Возможно регулирование частоты вращения изменением напряжения на обмотке статора. Для этих целей используются автотрансформаторы с плавным регулированием напряжения, магнитные усилители, тиристорные регуляторы напряжения.

Добавить сайт в закладки

Проследим устройство и работу вначале силовых (главных) цепей, а затем цепей управления.

Рисунок.1 Схема управления асинхронным короткозамкнутым двигателем при помощи нереверсивного .

Силовые цепи. к статору электродви­гателяД поступает через трехполюсный рубильник Р. Рубильник дает возможность отключить электродвигатель в случае ремонта или выхода из строя . Далее в силовой цепи находятся предохранители 1П, которые помещаются обычно на групповом распределительном щитке; они защищают цепи от корот­ких замыканий. Главные контакты Л трехполюсного линейного контактора включают или отключают обмотку статораэлектро­двигателя. Подключены главные контакты таким образом, чтобы подвижные контакты располагались со стороны двигателя, а неподвижные, всегда находящиеся под напряжением, - со стороны сети, такое подключение повышает безопасность обслуживания. Тепловые реле включаются в две фазы, так как чрезмерно большой ток возможен не менее чем в двух проводах, они служат для защиты двигателя от длительных перегрузок и от работы на двух фазах.

Применение в схеме наряду с тепловыми реле плавких предо­хранителей объясняется тем, что силовые контакты магнитных пускателей допускают разрыв токов перегрузки не больше семи­кратной величины номинального тока электродвигателя, мощность которого допустима в данном пускателе; а на разрыв токов корот­кого замыкания эти контакты не рассчитаны. В силовую цепь включаются нагревательные элементы реле.

Цепи управления. Питание цепи управления осущест­вляется здесь через рубильник и предохранители главной цепи. Кроме того, цепи управления защищены своим одним предохра­нителем 2П, он защищает цепь управления от коротких замыканий. Как видно из схемы, цепь управления питается напряжением такой же величины, что и силовая цепь.

В цепь управления включены кнопки «стоп» и «пуск».

Рисунок 2 Схема управления асинхронным короткозамкнутым двигателем с возможностью реверсирования.

Катушка Л линейного контактора с блок-контактном Л 1 при помощи своих главных контактов Л в силовой цепи осуществляет включение и отключение электродвигателя Д. Далее в цепь управ­ления включены размыкающие контакты (с ручным возвратом) тепловых реле 1РТ и 2РТ, нагревательные элементы которых включены в главную цепь. У некоторых типов тепловых реле име­ются два нагревательных элемента и только один размыкающий контакт, на который может воздействовать посредством рычажной системы каждая из биметаллических пластин.

Схема работает следующим образом. Для пуска двигателя пос­ле включения рубильника Р следует нажать кнопку «пуск». При этом замыкается цепь катушки контактора Л. Ток идет по следую­щей цепи: фаза Л 1 - предохранитель - размыкающая кнопка «стоп» - кнопка «пуск» - катушка контактора Л - размыкающие контакты тепловых реле 1РТ и 2РТ - фаза Л 3 . Вследствие того, что по катушке контактора проходит ток, сердечник ее намагни­чивается, якорь втягивается и включает главные контакты. Вы­воды обмотки статора С 1 C 2 С3 присоединяются к сети питания Л 1 , Л 2 , Л 3 , и двигатель включается. Одновременно с главными контактами замыкаются и блок-контакты так, что цепь катушки контактора замыкается через блок-контакт Л 1 шунтирующий кнопку «пуск». Теперь уже не нужно больше удерживать кнопку в нажатом состоянии; за счет действия пружины она возвращается в исходное положение. Для отключения двигателя следует нажать кнопку «стоп»; при этом питание катушки контактора Л преры­вается, и главные контакты под действием веса или пружины размы­каются и отсоединяют обмотку статора от сети.

Рассмотренная схема осуществляет и так называемую «нуле­вую» (или минимальную) защиту: при исчезновении или значительном снижении напряжения сети до 35-40% номинального значения контактор отключается и отключает электродвигатель от сети.

При восстановлении напряжения самопуска двигателя уже не произойдет, так как кнопка «пуск» отпущена, а блок-кон­такт Л 1 разомкнут.

В случае длительной перегрузки размыкающий контакт тепло­вого реле 1РТ (2РТ) отключает контактор, а следовательно, и двигатель. После действия реле тепловой защиты (если тепловое реле выполнено по принципу принудительного возврата) для воз­врата контакта реле в исходное положение следует нажать на кноп­ку, которая помещается на крышке пускателя; возврат контактов реле 1РТ (2РТ) после отключения возможен только через время, необходимое для того, чтобы биметаллические пластинки остыли.

Магнитные пускатели изготовляются для управления электродвигателями до 75-100 кВт. Рассмотренная схема может быть собрана также и с контактором. Для асинхронных двигателей напряжением до 500 В обычно применяются трехполюсные контак­торы переменного тока серии КТ с катушкой переменного тюка.

Для управления механизмами, требующими изменения направления вращения (реверсирования), применяется либо реверсив­ный магнитный пускатель, либо схема управления с двумя контак­торами, мало отличающаяся от схемы реверсивного пускателя.

На рис. 2 приведена схема управления асинхронным корот­козамкнутым двигателем с возможностью реверсирования. Как и схема управления с магнитным пускателем, данная схема допускает дистанционное управление, так как , которых в этой схеме три - «вперед», «назад» и «стоп», можно поместить на некотором расстоянии от двигателя. При помощи схемы, изо­браженной на рис. 2, можно пустить двигатель (и, следова­тельно, связанный с ним механизм), изменить направление вра­щения, остановить его; кроме того, схема осуществляет защиту установки от коротких замыканий, от перегрузки, от падения напряжения в сети (нулевая защита) и от самопуска. В этой схеме совмещаются две схемы нереверсивного пуска и имеются некоторые особенности. Схема снабжена двумя контакторами: контактором «вперед» (катушка и ее три главных контакта обозначены буквой В, а блок-контактыB 1 и В2) и контактором «назад» (катушка и три главных контакта обозначены буквой Н, а блок-контакты H1 и Н2). Главные контакты контакторов В и Н включены в силовую цепь таким образом, что когда замыкаются контакты В (контакты Н при этом разомкнуты), на обмотку статора подаются три фазы сети в одном порядке, а когда замыкаются контакты Н, две фазы из трех меняются местами. В связи с этим магнитное поле статора двигателя начинает вращаться в обратную сторону, и двигатель реверсируется.

Действительно, при включении контактов В фаза Л 1 сети по­дается на обмотку статора С 1, фаза Л 2 - на С 2 , фаза Л 3 - на С 3. Если же замыкаются контакты Н, то фаза Л 1 подается на об­мотку С 3 , фаза Л 2 - на С 2 (без изменения), фаза Л 3 - наС 1, следо­вательно, фазы Л 1 и Л 3 меняются местами.

Схема работает следующим образом. Для включения двига­теля в направлении «вперед» нажимается кнопка «вперед»; при этом ток от фазы Л 2 идет по цепи: 1 - 3 - 5 - 7 - 6 - 4 - 2 - фаза Л 3 ; катушка В замыкает свои главные контакты В, и двигатель вклю­чается на движение «вперед». Для изменения направления враще­ния включается кнопка «стоп», а затем включается кнопка «назад»; при этом ток идет по цепи: фаза Л 2 - 1 - 3 - 9 - 11 - 6 - 4 - 2 - фаза Л 3 . Теперь ток уже идет по катушке Н, которая замы­кает свои контакты, и двигатель реверсируется. Одновременное включение обоих контакторов в рассмотренной схеме может при­вести к короткому замыканию в силовой цепи. Если двигатель включить в направлении, например, «вперед» и по ошибке нажать кнопку «назад», то катушка Н также включит свои контакты (кон­такты В были включены ранее, поскольку двигатель работал в направлении «вперед»), в силовой цепи окажутся включенными все шесть главных контактов, что приведет к короткому замыканию в двух фазах (Л 1 и Л 3). Чтобы этого не произошло, в схеме при­меняются двухцепные кнопки «вперед» и «назад»; при нажатии кноп­ки «вперед» одновременно размыкается контакт в цепи катушки Н, и наоборот, если нажать кнопку «назад», то размыкается кон­такт катушки В. Это устройство называется механической блоки­ровкой. Для увеличения надежности работы схемы механической блокировкой снабжаются также якори катушек контакторов, которые имеют специальный рычаг: втягивание якоря одной ка­тушки делает невозможным одновременное втягивание якоря второй катушки.

Кроме механической применяется также электрическая бло­кировка. На рис. 2 кнопки управления «вперед» и «назад» обычные; однако в цепь катушки «вперед» включен размыкающий контакт контактора «назад», и наоборот, в цепь катушки «назад» включен размыкающий контакт контактора «вперед». Если нажать, например, кнопку «назад», то ток пройдет по катушке контактора «назад», контактор замкнет свои замыкающие контакты и разомк­нет свой размыкающий контакт Н2 в цепи катушки В. Следователь­но, пока включена катушка контактора Н, цепь катушки контак­тора В будет разомкнутой, и включить катушку В одновременно с катушкой Н невозможно. Это устройство называется электриче­ской блокировкой. Для увеличения надежности работы схемы одно­временно с электрической применяют механическую блокировку.

Владимир Рентюк, Запорожье, Украина

В статье дается краткий обзор и анализ популярных схем, предназначенных для управления коллекторными двигателями постоянного тока, а также предлагаются оригинальные и малоизвестные схемотехнические решения

Электродвигатели являются, наверное, одним из самых массовых изделий электротехники. Как говорит нам всезнающая Википедия, электрический двигатель - электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую. Началом его истории можно считать открытие, которое сделал Майкл Фарадей в далеком 1821 году, установив возможность вращения проводника в магнитном поле. Но первый более-менее практический электродвигатель с вращающимся ротором ждал своего изобретения до 1834 года. Его во время работы в Кёнигсберге изобрел Мориц Герман фон Якоби, более известный у нас как Борис Семенович. Электродвигатели характеризуют два основных параметра - это скорость вращения вала (ротора) и момент вращения, развиваемый на валу. В общем плане оба этих параметра зависят от напряжения, подаваемого на двигатель и тока в его обмотках. В настоящее время имеется достаточно много разновидностей электродвигателей, и поскольку, как заметил наш известный литературный персонаж Козьма Прутков, нельзя объять необъятное, остановимся на рассмотрении особенностей управления двигателями постоянного тока (далее электродвигателями).

К двигателям постоянного тока относятся два типа - это привычные для нас коллекторные двигатели и бесколлекторные (шаговые) двигатели. В первых переменное магнитное поле, обеспечивающее вращение вала двигателя, образуется обмотками ротора, которые запитываются через щеточный коммутатор - коллектор. Оно и взаимодействует с постоянным магнитным полем статора, вращая ротор. Для работы таких двигателей внешние коммутаторы не требуются, их роль выполняет коллектор. Статор может быть изготовлен как из системы постоянных магнитов, так и из электромагнитов. Во втором типе электродвигателей обмотки образуют неподвижную часть двигателя (статор), а ротор сделан из постоянных магнитов. Здесь переменное магнитное поле образуется путем коммутации обмоток статора, которая выполняется внешней управляющей схемой. Шаговые двигатели («stepper motor» в английском написании) значительно дороже коллекторных. Это достаточно сложные устройства со своими специфическими особенностями. Их полное описание требует отдельной публикации и выходит за рамки данной статьи. Для получения более полной информации по двигателям этого типа и их схемам управления можно обратиться, например, к .

Коллекторные двигатели (Рисунок 1) более дешевы и, как правило, не требуют сложных систем управления. Для их функционирования достаточно подачи напряжения питания (выпрямленного, постоянного!). Проблемы начинают возникать, когда появляется необходимость в регулировке скорости вращения вала такого двигателя или в специальном режиме управления моментом вращения. Основных недостатков таких двигателей три - это малый момент на низких скоростях вращения (поэтому часто требуется редуктор, а это отражается на стоимости конструкции в целом), генерация высокого уровня электромагнитных и радиопомех (из-за скользящего контакта в коллекторе) и низкая надежность (точнее малый ресурс; причина в том же коллекторе). При использовании коллекторных двигателей необходимо учитывать, что ток потребления и скорость вращения их ротора зависят от нагрузки на валу. Коллекторные двигатели более универсальны и имеют более широкое распространение, особенно в недорогих устройствах, где определяющим фактором является цена.

Поскольку скорость вращения ротора коллекторного двигателя зависит, в первую очередь, от подаваемого на двигатель напряжения, то естественным является использование для его управления схем, имеющих возможность установки или регулировки выходного напряжения. Такими решениями, которые можно найти в Интернете, являются схемы на основе регулируемых стабилизаторов напряжения и, поскольку век дискретных стабилизаторов давно прошел, для этого целесообразно использовать недорогие интегральные компенсационные стабилизаторы, например, . Возможные варианты такой схемы представлены на Рисунке 2.

Схема примитивная, но кажется очень удачной и, главное, недорогой. Посмотрим на нее с точки зрения инженера. Во-первых, можно ли ограничить момент вращения или ток двигателя? Это решается установкой дополнительного резистора. На Рисунке 2 он обозначен как R LIM . Его расчет имеется в спецификации, но он ухудшает характеристику схемы как стабилизатора напряжения (об этом будет ниже). Во-вторых, какой из вариантов управления скоростью лучше? Вариант на Рисунке 2а дает удобную линейную характеристику регулирования, поэтому он и более популярен. Вариант на Рисунке 2б имеет нелинейную характеристику. Но в первом случае при нарушении контакта в переменном резисторе мы получаем максимальную скорость, а во втором - минимальную. Что выбрать - зависит от конкретного применения. Теперь рассмотрим один пример для двигателя с типовыми параметрами: рабочее напряжение 12 В; максимальный рабочий ток 1 А. ИМС LM317, в зависимости от суффиксов, имеет максимальный выходной ток от 0.5 А до 1.5 А (см. спецификацию ; имеются аналогичные ИМС и с бóльшим током) и развитую защиту (от перегрузки и перегрева). С этой точки зрения для нашей задачи она подходит идеально. Проблемы скрываются, как всегда, в мелочах. Если двигатель будет выведен на максимальную мощность, что для нашего применения весьма реально, то на ИМС, даже при минимально допустимой разнице между входным напряжением V IN и выходным V OUT , равной 3 В, будет рассеиваться мощность не менее

P = (V IN - V OUT)×I = 3×1 = 3 Вт.

Таким образом, нужен радиатор. Опять вопрос - на какую рассеиваемую мощность? На 3 Вт? А вот и нет. Если не полениться и рассчитать график нагрузки ИМС в зависимости от выходного напряжения (это легко выполнить в Excel), то мы получаем, что при наших условиях максимальная мощность на ИМС будет рассеиваться не при максимальном выходном напряжении регулятора, а при выходном напряжении равном 7.5 В (см. Рисунок 3), и она составит почти 5.0 Вт!

Как видим, получается что-то уже не дешевое, но очень громоздкое. Так что такой подход годится только для маломощных двигателей с рабочим током не более 0.25 А. В этом случае мощность на регулирующей ИМС будет на уровне 1.2 Вт, что уже будет приемлемо.

Выход из положения - использовать для управления метод широтно-импульсной модуляции (ШИМ). Он, действительно, самый распространенный. Его суть - подача на двигатель промодулированных по длительности однополярных прямоугольных импульсов. Согласно теории сигналов, в структуре такой последовательности имеется постоянная составляющая, пропорциональная отношению τ/T, где: τ - длительность импульса, а T - период последовательности. Вот она-то и управляет скоростью двигателя, который выделяет ее как интегратор в этой системе. Поскольку выходной каскад регулятора на основе ШИМ работает в ключевом режиме он, как правило, не нуждается в больших радиаторах для отвода тепла, даже при относительно больших мощностях двигателя, и КПД такого регулятора несравненно выше предыдущего. В ряде случаев можно использовать понижающие или повышающие DC/DC-преобразователи, но они имеют ряд ограничений, например, по глубине регулировки выходного напряжения и минимальной нагрузке. Поэтому, как правило, чаще встречаются иные решения. «Классическое» схемное решение такого регулятора представлено на Рисунке 4 . Оно использовано в качестве дросселя (регулятора) в профессиональной модели железной дороги.

На первом операционном усилителе собран генератор, на втором компаратор. На вход компаратора подается сигнал с конденсатора C1, а путем регулирования порога срабатывания формируется уже сигнал прямоугольной формы с нужным отношением τ/T (Рисунок 5).

Диапазон регулировки устанавливается подстроечными резисторами RV1 (быстрее) и RV3 (медленнее), а сама регулировка скорости осуществляется резистором RV2 (скорость). Обращаю внимание читателей, что в Интернете на русскоязычных форумах гуляет похожая схема с ошибками в номиналах делителя, задающего порог компаратора. Управление непосредственно двигателем осуществляется через ключ на мощном полевом транзисторе типа . Особенности этого транзистора типа MOSFET - большой рабочий ток (30 А постоянного, и до 120 А импульсного), сверхмалое сопротивление открытого канала (40 мОм) и, следовательно, минимальная мощность потерь в открытом состоянии.

На что нужно в первую очередь обращать внимание при использовании таких схем? Во-первых, это исполнение цепи управления. Здесь в схеме (Рисунок 4) есть небольшая недоработка. Если со временем возникнут проблемы с подвижным контактом переменного резистора, мы получим полный почти мгновенный разгон двигателя. Это может вывести из строя наше устройство. Какое противоядие? Установить добавочный достаточно высокоомный резистор, например, 300 кОм с вывода 5 ИМС на общий провод. В этом случае при отказе регулятора двигатель будет остановлен.

Еще одна проблема таких регуляторов - это выходной каскад или драйвер двигателя. В подобных схемах он может быть выполнен как на полевых транзисторах, так и на биполярных; последние несравненно дешевле. Но и в первом и во втором варианте необходимо учитывать некоторые важные моменты. Для управления полевым транзистором типа MOSFET нужно обеспечить заряд и разряд его входной емкости, а она может составлять тысячи пикофарад. Если не использовать последовательный с затвором резистор (R6 на Рисунке 4) или его номинал будет слишком мал, то на относительно высоких частотах управления операционный усилитель может выйти из строя. Если же использовать R6 большого номинала, то транзистор будет дольше находиться в активной зоне своей передаточной характеристики и, следовательно, имеем рост потерь и нагрев ключа.

Еще одно замечание к схеме на Рисунке 4. Использование дополнительного диода D2 лишено смысла, так как в структуре транзистора BUZ11 уже имеется свой внутренний защитный быстродействующий диод с лучшими характеристиками, чем предлагаемый. Диод D1 также явно лишний, транзистор BUZ11 допускает подачу напряжения затвор-исток ± 20 В, да и переполюсовка в цепи управления при однополярном питании, как и напряжение выше 12 В, невозможны.

Если использовать биполярный транзистор, то возникает проблема формирования достаточного по величине базового тока. Как известно, для насыщения ключа на биполярном транзисторе ток его базы должен быть, по крайней мере, не менее 0.06 от тока нагрузки. Понятно, что операционный усилитель такой ток может не обеспечить. С этой целью в аналогичном, по сути, регуляторе, который используется, например, в популярном мини-гравере PT-5201 компании , применен транзистор , представляющий собой схему Дарлингтона. Тут интересный момент. Эти мини-граверы иногда выходят из строя, но не из-за перегрева транзистора, как можно было бы предположить, а из-за перегрева ИМС (максимальная рабочая температура +70 °С) выходным транзистором (максимально допустимая температура +150 °С). В изделиях, которыми пользовался автор статьи, он был вплотную прижат к корпусу ИМС и посажен на клей, что недопустимо нагревало ИМС и почти блокировало теплоотвод. Если вам попалась такое исполнение, то лучше «отклеить» транзистор от ИМС и максимально отогнуть. За это know-how автор статьи был премирован компанией Pro’sKit набором инструментов. Как видите все нужно решать в комплексе - смотреть не только на схемотехнику, но и внимательно относится к конструкции регулятора в целом.

Есть еще несколько интересных схем более простых ШИМ-регуляторов. Например, две схемы на одиночном операционном усилителе с драйвером опубликованы в [



Loading...Loading...